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Understanding the neural circuit mechanisms that transform 
sensory information into behavior is a fundamental goal of 
neuroscience. Where and how decision signals, that is, inter-

nal variables that carry choice-relevant activity, are generated along 
the pathway to make an informed choice is key to understanding 
this transformation. The anatomical and conceptual separation of 
input-related sensory areas and output-related motor areas, has led 
to the prevailing idea that sensory areas extract information about 
the stimulus1–3 whereas higher cortical areas use this information to 
generate decision variables4–8. This framework of hierarchical and 
anatomically defined processing steps has fostered ground-breaking 
studies in the visual system describing the transformation of sen-
sory signals along the visual pathway1,9. In the somatosensory 
system of monkeys, seminal work by Romo and colleagues sug-
gested that neurons in S1 represent primarily stimulus information 
whereas decision signals appear downstream in secondary somato-
sensory cortex (S2)4,10–12. As a consequence, S1 has only rarely been 
discussed as a potential locus of decision variables in perceptual 
decision making5–8.

These findings were corroborated by work in rats and mice that 
reported stimulus-specific coding and a lack of decision coding 
activity in S1 (refs. 13–15). However, a series of recent studies found 
that activity of neurons in L2/3 of S1 in mice performing a ‘go/no 
go’ task can be correlated with behavioral choice16–19. These demon-
strations of choice-related activity in S1 seem to be in direct conflict 
with earlier work in monkeys, rats and mice. In these more recent 
studies, the behavioral report of detecting a stimulus is either a 
response (go) or the withhold of a response (no go). In trials where 
the animals responded, L2/3 S1 neurons exhibited higher activity. 
It is unclear whether this signal difference across trial types reflects 
behaviorally relevant decision coding or a modulation of neural 

activity by action-related variables such as motivation, movement 
preparation, feedback from the movement, sensory input that 
results from the movement or reward-related activity, which have 
been shown to be widespread across the brain20–22. For example, 
in primary visual cortex (V1), similar choice-related activity was 
observed during a go/no go task23, which has been challenged by 
studies reporting the absence of choice-related activity in symmet-
ric choice tasks that avoid the imbalance in behavior across trial 
types22,24. In summary, studies across mice, rats and monkeys sug-
gest that neurons in S1 only carry stimulus information2,13,15,25 in 
line with the idea of a strict processing hierarchy. However, recent 
studies reported putative choice signals in superficial neurons in S1 
(refs. 16–18) referring to a difference in activity in trials with a differ-
ent choice action (go versus no go).

To test whether neurons in L2/3 of S1 carry behaviorally relevant 
decision information, it is crucial to use a task that features choice 
actions with symmetrical movement patterns. Moreover, we need 
a cued task design to separate the stimulus period from the choice 
action, as well as population recordings to allow dense sampling 
from as many neurons in L2/3 as possible. In a task with symmetric 
choice actions, differential neural activity before the motor action 
that aligns with the behavioral outcome can be distinguished from 
modulation of neural activity by action-related variables. Finally, to 
establish whether choice-related neural activity is indeed causally 
involved in the decision-making process, it is necessary to directly 
manipulate neuronal activity26,27 during behavior.

Here, we have addressed these challenges by training mice to 
perform a cued two-choice texture discrimination task in which the 
behavioral choice was indicated by licking one of two lickports19. 
Mice had to discriminate different texture stimuli while we recorded 
neuronal activity simultaneously from hundreds of neurons using 
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two-photon calcium imaging of L2/3 neurons spanning multiple 
barrels. We then used an all-optical combination of two-photon 
optogenetic stimulation and two-photon calcium imaging in behav-
ing mice to specifically activate ensembles of neurons that encode 
task-related information while reading out the activity from nearby 
neurons28–32. We show that in Correct trials, where stimulus and 
choice are correlated, the activity of many neurons (trial-coding 
neurons) in L2/3 is modulated by the trial type (‘Smooth’ (S) or 
‘Rough’ (R)). When comparing the activity of trial-coding neurons 
in Correct and Incorrect trials across the two stimuli, we find that 
the activity of most trial-coding neurons in Incorrect trials was 
either aligned to the same stimulus as in Correct trials, or to the 
other stimulus. Activity in a subset of trial-coding neurons tracked 
stimulus identity irrespective of behavioral choice (stimulus neu-
rons) whereas a different subset encoded behavioral choice irrespec-
tive of stimulus identity (decision neurons). On Miss trials, stimulus 
information was variable but a conclusive decision signal across the 
decision neuron population was absent. We find that stimulus and 
decision neurons exhibit differential activity patterns over time 
during the trial with the peak of activity of decision neurons fol-
lowing stimulus neuron activity. We also demonstrate that activity 
in decision neurons is not encoding a directional lick signal. Using 
targeted photostimulation and analysis of shared trial-by-trial vari-
ability, we show that stimulus and decision neurons exhibit differ-
ent functional connectivity and local circuit integration. We further 
train animals to discriminate four textures and find that categorical 
coding of the choice develops during learning, which might reflect 
the formation of a stimulus-choice association. Finally, to test the 
behavioral relevance of decision-related activity in L2/3 S1, we use 
targeted photostimulation during behavior and find that this early 
decision variable in L2/3 S1 is causally involved in perceptual deci-
sion making. Thus, S1 is not just a sensory area extracting stimu-
lus information but also encodes choice-related information that is 
involved directly in the decision-making process.

Results
Task-dependent activity in L2/3 of barrel cortex. We trained 
head-fixed mice to perform a two-choice texture discrimination 
task in which one of two textures was presented in each trial. Mice 
reported the identity of the stimulus by licking one of two lickports 
associated with each stimulus (Fig. 1a). At the start of each trial, one 
texture was moved into contact with the whiskers of the mouse to 
allow free sampling. Then, 3 s after the beginning of the trial, and 
approximately 1 s after the first touch between whiskers and the tex-
ture, an auditory go cue signaled the start of the response window 
(2 s) (Fig. 1b). Licking the lickport associated with the texture within 
the response window resulted in a ‘Correct’ trial and released a sugar 
water reward. Licking the wrong lickport was neither rewarded nor 
punished (Incorrect). Licking a lickport within the sampling period 
but before the go cue triggered an auditory punishment (1 s white 
noise) and the trial was aborted (Early response). Failure to lick any 
lickport during the withhold window or response window resulted 
in a ‘Miss’ trial. In all, 13 mice learned to perform the two-texture 
discrimination task with high accuracy (Fig. 1c and Extended Data 
Fig. 1). Mice performed 436 ± 114 (mean ± s.d.) trials per session. 
Analysis was performed on Correct and Incorrect trials in periods 
during which the mouse did not show a consistent lickport bias (tri-
als without lickport bias: 355 ± 99 (mean ± s.d.); Methods), amount-
ing to, on average, 197 ± 57 (mean ± s.d.) Correct trials and 80 ± 44 
(mean ± s.d.) Incorrect trials per session.

We used two-photon calcium imaging to record population activ-
ity in barrel cortex across multiple barrels from excitatory neurons 
expressing GCaMP6s17,18,33 in a 798 × 798 µm2 field-of-view (FOV) 
(Fig. 1d). We captured the activity of 774 ± 240 (mean ± s.d.) neu-
rons per imaging plane in each recording (total number of neurons 
= 61,895). We found that a subset of neurons in L2/3 barrel cortex 

showed trial-type-dependent responses (Fig. 1d). We then applied 
receiver operating characteristic (ROC) analysis to find neurons 
whose activity in the second before the lick differed between Correct 
trials with the smooth stimulus (Stim S) and Correct trials with the 
rough stimulus (Stim R) presented. We found that the activity of 
25.2% ± 7.9% (mean ± s.d.) of neurons within a FOV encoded the 
trial type in Correct trials (Stim/Lickport S versus Stim/Lickport  
R trials) and refer to them as trial-coding neurons (Fig. 1e).

Stimulus and decision coding in L2/3 barrel cortex neurons. It 
is unclear whether a trial-coding neuron encodes the stimulus 
identity or the choice because a priori stimulus and choice are per-
fectly aligned in Correct trials. To test for choice coding in com-
parison with stimulus coding in the neural activity we calculated 
stimulus and choice selectivity for all neurons using a similar ROC 
analysis as described above but separated by trial type34 (Fig. 2a and 
Extended Data Fig. 2a–c; stimulus selectivity, Stim S versus Stim 
R in Correct or Incorrect trials; choice selectivity, Correct versus 
Incorrect in Stim S or Stim R trials). We found that 36% of all neu-
rons encoded the stimulus type and 31% of all neurons encoded 
the choice. To assess whether neurons with high stimulus selectivity 
encode the same stimulus in Correct and Incorrect trials, we looked 
at the activity patterns across trial types and found that a subset of 
these neurons encoded the same stimulus identity irrespective of 
the animal’s choice (Fig. 2b). We refer to these neurons as ‘stimulus 
neurons’. The activity of a different subset of neurons aligned with 
the behavioral choice of the mouse across different trial types. We 
refer to these neurons that exhibit selective firing to a specific choice 
irrespective of the type of stimulus that was presented as ‘decision 
neurons’ (Fig. 2b). We reliably found stimulus and decision neurons 
across all mice performing the two-choice texture discrimination 
task and stimulus and decision neurons show higher response reli-
ability than other neurons in the FOV (Supplementary Fig. 1). Using 
ROC analysis (Stim S versus Stim R in Correct and Incorrect trials), 
we find that 10.1% ± 1.7% (mean ± s.e.m.) of all neurons in the FOV 
identify as stimulus neurons and 4.3% ± 0.6% (mean ± s.e.m.) as 
decision neurons (Fig. 2c).

To further characterize the local network integration of stimulus 
and decision neurons in S1 we analyzed their shared variability and 
spatial clustering. If stimulus and decision neurons are part of dis-
tinct functional subnetworks in the L2/3 barrel cortex, we hypoth-
esized that shared trial-by-trial response variability between neuron 
pairs would be stronger within each group compared with across 
group35–37. Indeed, we found that trial-by-trial response variability 
is stronger within either group than across groups or across all neu-
rons in L2/3 (Fig. 2d). Despite no obvious clustering with respect 
to barrel centers in either subgroup, the population of stimulus 
neurons exhibits a slight spatial clustering across the FOV whereas 
decision neurons are distributed uniformly (Extended Data Fig. 3). 
Together, these results suggest that stimulus and decision neurons 
form distinct subgroups that are distinguishable in more than just 
the trial-coding dimension.

To rule out that the decision signal in decision neurons is driven 
primarily by movements associated with the choice action, we per-
formed a series of analyses. First, we repeated our ROC analysis of 
stimulus and decision neurons but restricted the analysis window to 
100 ms before the lick and show that we can detect similar numbers 
of decision neurons (Extended Data Fig. 2d; 9.5% ± 1.6% stimulus 
neurons and 3.9% ± 0.5% decision neurons, mean ± s.e.m.). This 
means that the decision signal is present before a potential motor sig-
nal. To test the possibility that the decision signal in decision neurons 
is driven by whisking or running, we tracked whisker movement and 
running in a subset of sessions and built a generalized linear model 
(GLM) to dissect the impact of four regressors: stimulus type, behav-
ioral choice, running speed and whisking (nine mice, two sessions 
each; Fig. 2e and Extended Data Fig. 4a,b). To identify the unique 
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contribution of each regressor, we calculated how much of the aver-
age trial activity of a given neuron is explained by any of the regressors 
using semipartial regression with randomized regressors (Fig. 2f and 
Extended Data Fig. 4c,d). We found that 8.3 ± 2.5% (mean ± s.e.m.) 
of neurons encode running information, 9.0 ± 1.5% (mean ± s.e.m.) 
encode whisking information and 6.9 ± 2.0% (mean ± s.e.m.) encode 
stimulus information. However, in 3.6 ± 1.2% (mean ± s.e.m.) of 
neurons, the choice regressor was able to explain neural activity that 
was not explained by stimulus, running or whisking (Fig. 2g and 
Extended Data Fig. 4e,f). Therefore, decision signals in L2/3 are not 
simply a result of licking, running or whisking movements correlated 
with the choice of the mouse.

Distinct activity patterns in stimulus and decision neurons. We 
found that stimulus neurons are more active than decision neu-
rons during the sampling period, whereas decision neurons show 
more activity outside of the sampling period compared with stimu-
lus neurons (Fig. 3a). However, activity in both neuron types rises 
sharply after the onset of sensory input and most stimulus and 
decision neurons peak before the go cue and the lick (Extended 
Data Fig. 5a). When we aligned the activity of stimulus and deci-
sion neurons to the go cue as a proxy for stimulus presentation as 
well as to the lick of the mouse (Fig. 3b), the activity in both stimu-
lus and decision neurons rose more quickly when aligned to the 
stimulus presentation than when aligned to the lick (Fig. 3c; stimu-
lus neuron activity rise time (Stimulus): 400 ms; rise time (Lick): 
633 ms; decision neuron activity rise time (stimulus): 600 ms; rise 
time (Lick): 767 ms; rise time from 10% to 90% of peak activity). 
Aligning stimulus and decision neuron activity to the first whisker  

touch in a subset of sessions in which whisker kinematics were 
recorded reveals similar results (Extended Data Fig. 5b–d). This 
suggests that activity in both neuron types is driven preferentially 
by stimulus presentation. The peak of decision neuron activity fol-
lowed the peak of stimulus neurons in both conditions with a differ-
ence in peak time of 120 ms or 270 ms when aligned to the stimulus 
or the lick, respectively. For the decay of the signal, decision neuron 
activity fell more quickly when aligned to the lick than the stimulus 
and started to decay before the first lick (decision neuron activity 
decay time (Stimulus): 567 ms; decay time (Lick): 433 ms; decay to 
50% of peak activity). Together, these analyses indicate that stimu-
lus and decision neuron activity follows sensory input and precedes 
the lick, that decision neuron activity decays quickly once the lick 
is initiated and that stimulus neuron activity peaks before decision 
neuron activity.

Categorical coding in decision neurons develops with learning. 
If stimulus neurons encode stimulus properties, and decision neu-
rons are associated with the categorical choice of the mouse, then 
a selective extension of the stimulus space should predominantly 
affect stimulus neurons while decision neurons encode the binary 
choice. To study specifically how the decision signal develops dur-
ing the formation of a stimulus-choice association, it is necessary to 
separate learning of this association from the initial stages of task 
learning accompanied by changes affecting whisking and running 
patterns that directly influence the incoming sensory signal33,38,39. 
To this end, we trained four two-texture discrimination expert mice 
to associate an additional intermediate texture (S2 and R2) to each 
of the lickports (Fig. 4 and Extended Data Fig. 6a). On the first day 
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of four-texture training, we identified decision neurons based on 
their responses to the previously trained textures (S and R). Their 
responses to the newly introduced stimuli (S2 and R2) were variable 
and they lacked a binary response across the four textures (Fig. 4a). 
After training, decision neurons in four-texture mice showed cat-
egorical coding across the four stimuli, reflecting the association of 
two different stimuli to one lickport. During learning, the categori-
cal coding of decision neurons, that is, the difference of responses 
between stimuli associated with either lickport (Stim S and S2 ver-
sus Stim R and R2) increased with an improvement of behavioral 
texture discrimination, whereas the discrimination between tex-
tures associated with the same lickport decreased in all four mice  
(Fig. 4b,c). This categorical coding was specific to decision neurons 
while stimulus neurons differentiated more strongly between tex-
tures associated with the same lickport (Fig. 4d,e). Furthermore, 
to test that the decision signal is dissociable from a lick-related 
signal, we took advantage of the fact that, at the beginning of the 
four-texture training, mice initially randomly lick the right and left 
lickport in the presence of a texture. We find that during this initial 
learning phase, before an association between the stimulus and the 
lickport has been made, decision neurons do not encode the lick-
port identity (Extended Data Fig. 6b,c).

In summary, decision neurons exhibit categorical coding, while 
stimulus neurons encode stimulus identity and the occurrence of 
categorical decision coding in decision neurons develops with 
learning. Therefore, the existence of a categorical decision signal 
in decision neurons in L2/3 barrel cortex is likely to be crucial for 
behavioral performance in our texture discrimination task.

Miss trials lack a conclusive decision signal. If the decision signal 
is relevant for the mouse to make a choice, we wondered whether an 
inconclusive decision signal would inhibit the mouse from making 
a choice on a trial-by-trial basis. To test this possibility, we analyzed 
stimulus and decision neuron activity in Miss trials (15% ± 10% 
(mean ± s.d.) of trials across all sessions, Fig. 5a). To distinguish tri-
als in which the lack of a lick response was accompanied by a lack 
of stimulus information (for example, due to insufficient whisk-
ing at the end of the session), we separated Miss trials into ‘Miss 
Stimulus+’ and ‘Miss Stimulus−’ trials based on whether a linear 
classifier trained on stimulus neuron activity in Correct trials could 
predict the stimulus type in Miss trials (Fig. 5b). Miss Stimulus– tri-
als are accompanied with a lower whisking amplitude, lower run-
ning speed and lower overall activity in stimulus neurons compared 
with Correct trials. In contrast, on Miss Stimulus+ trials, behavioral 
variables are unchanged and stimulus neuron activity is even higher 
compared with Correct trials (Fig. 5c,d and Extended Data Fig. 7). 
The overall activity in decision neurons is similar in Correct and 
Miss Stimulus+ trials. Therefore, a reduction in activity alone does 
not explain the lack of a lick in Miss Stimulus+ trials. But what if the 
decision signal across the decision neuron population is inconclu-
sive? To address this, we used a classifier trained on decision neuron 
activity in Correct trials and asked if it can predict choice on Miss 
Stimulus+ or Miss Stimulus– trials. Performance was at chance level 
for both trial types (Fig. 5d). Thus, an informative sensory signal 
in stimulus neurons in L2/3 barrel cortex is not sufficient for the 
mouse to trigger a choice action. However, the lack of a decision 
signal is associated with the absence of a choice action in Miss trials.
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Cell-type specific functional connectivity in L2/3 neurons. To 
test if the decision signal we observed is indeed causally involved 
in decision making and not due to feedback related to the choice 
action, it is important to directly manipulate the activity of selected 
neurons in L2/3 of barrel cortex. Therefore, we performed targeted 
two-photon photostimulation and simultaneous two-photon cal-
cium imaging in behaving mice28–32,40–42 to probe the network inte-
gration of stimulus and decision neurons, and to establish causal 
links between neural activity and behavior.

Stimulus and decision neurons show higher shared trial-by-trial 
response variability within than between subgroups, which could 
be due to increased recurrent connectivity or common feedback  
(Fig. 2d). To directly probe the local network integration, we selec-
tively stimulated either of two different subsets of trial-coding 

neurons in a subset of ‘catch’ trials where no texture stimulus was 
presented to study the recruitment of stimulus and decision neu-
rons depending on the activated target ensemble (Targets S and 
Targets R; Fig. 6a and Extended Data Fig. 8). We trained mice 
coexpressing the calcium indicator GCaMP7f and the excitatory 
soma-targeted opsin C1V1 in L2/3 barrel cortex to perform the 
two-choice texture discrimination task (Fig. 6b,c). Neurons were 
selected for target ensembles based on trial selectivity, and target 
ensembles could be activated with cellular resolution41,43 (Fig. 6d,e). 
Each target ensemble across experiments contains neurons with a 
varying degree of stimulus and choice selectivity. We then analyzed 
the functional properties of ‘followers’, that is, neurons across the 
FOV that were not directly activated by the photostimulation laser 
but were activated or suppressed as a consequence of activating the 
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target ensemble, with respect to the stimulus and choice selectivity 
in the target ensemble (Extended Data Fig. 9a).

We found that the stimulus selectivity of followers that showed 
a positive (or negative) response to photostimulation is positively 
(or negatively) correlated with the average stimulus selectivity of the 
target ensemble, whereas the choice selectivity of targets and posi-
tive followers was not correlated (Fig. 6f and Extended Data Fig. 9b).  
This implies that the network encoding the stimulus involves more 
like-to-like functional connectivity, where neurons encoding the 
same stimulus are connected more strongly than the local circuit 
encoding the decision. With a difference in intragroup functional 
connectivity, we wondered if local activation of our target ensembles 
triggers different responses in stimulus and decision neurons. The 
global effect of photostimulation on background neurons across the 
FOV is suppressive43 (Fig. 6g). When dissecting the effect of photo-
stimulation on stimulus and decision neurons, however, we found 
that, whereas stimulus neurons follow the overall trend, decision 
neurons on average showed a positive response to photostimulation 
(Fig. 6g). This indicates that decision neurons might receive more 
net excitatory inputs when local targets are activated than stimulus 
neurons. This cannot be explained by a bias in the target ensembles 
because the targets and background cells tend to be more selective 
to stimulus than choice (Extended Data Fig. 9c). Taken together, 
the network effects following targeted photostimulation suggest a 

higher like-to-like functional connectivity between neurons encod-
ing the same stimulus, while choice-selective neurons show lower 
recurrent connectivity but can be more effectively recruited by the 
local network.

Targeted optogenetic activation modulates behavior. Next, we 
tested how targeted photostimulation affects behavioral outcome 
during the task. Here, we stimulated the same ensembles as before, 
but in trials with texture presentation (‘Texture trials’; Fig. 7a). We 
either stimulated the target ensemble whose trial preference aligns 
with the correct choice (PhotoBoost) or the target ensemble that 
prefers the opposite trial type (PhotoDisrupt) with a brief pho-
tostimulation during the withhold period (10.5 ± 3.9 targets per 
photostimulation pattern, Fig. 7a,b; Methods). On average, behav-
ioral performance did not change consistently in photostimula-
tion trials compared to control trials (where photostimulation was 
set to zero) (Extended Data Fig. 10a,b). However, target ensem-
bles across sessions and photostimulation conditions differ with 
respect to the amount of stimulus and choice selectivity present in 
the target neurons. We therefore asked whether the stimulus and 
choice coding properties of the target cells can explain the seem-
ingly heterogeneous behavioral effect. We found that a change in 
performance is positively correlated with the choice selectivity, 
but not the stimulus selectivity of the activated targets (Fig. 7c,d).  
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The more the target population preferred the correct choice on 
that trial, the greater the positive effect of stimulation. Thus, tar-
geted photostimulation of choice-selective neurons improves 
behavioral performance selectively, depending on the functional 
properties of the targeted neurons. The behavioral effect size and 
sign does not depend on the number or the spatial clustering of 
the target neurons or the response in the background popula-
tion (Extended Data Fig. 10c–e). A linear regression model that 
takes into account the functional selectivity and photostimulation 
response of individual target neurons, background neuron activ-
ity and whisking state of the animal confirms our finding that the 
behavioral effect of photostimulation depends on the choice selec-
tivity of directly activated targets and not stimulus selectivity or 

whisking (Extended Data Fig. 10f). These results provide direct 
evidence that the decision signal in L2/3 barrel cortex is causally 
involved in decision making.

Discussion
Understanding where and how behaviorally relevant decision sig-
nals are present in neural circuits is key to unraveling how sen-
sory information is transformed into behavioral output, one of the 
most fundamental questions in neuroscience. Using population 
two-photon imaging and targeted two-photon photostimulation 
of neurons in S1 of mice performing a cued two-choice texture 
discrimination task, we have identified a decision signal in L2/3 
neurons of S1 that is causally linked to behavior. Decision neurons, 
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a small but distinct subgroup, carry the strongest decision signal 
within the population. The categorical decision signal that develops 
with learning is temporally aligned to sensory input, and is lacking 
in trials when animals fail to make a choice. Using targeted photo-
stimulation, we demonstrate that stimulus and decision neurons are 
differentially integrated into the local circuit, providing indepen-
dent confirmation that they represent functionally distinct groups 
of cells. Crucially, targeted optogenetic activation of the decision 
signal improves behavioral performance and therefore directly links 
the decision signal to behavior. These findings provide conclusive 
evidence that a decision signal is present at the level of primary sen-
sory cortex and that it is not merely a copy of a decision signal gen-
erated elsewhere in the brain, but rather a signal that is readout by 
downstream circuits to drive behavior.

Experimental requirements to identify decision signals. There is 
strong evidence that the details of task design can crucially affect 
cortical computations as well as the involvement of brain areas nec-
essary for task performance12,13,23,33,44,45. Perceptual decision-making 
tasks differ with respect to the stimuli presented, the number of 
choices, the actions associated with the choices and delay periods, 
as well as general environmental features. Task design and species 
differences might explain why a series of earlier studies in monkey 
and rodents reported only stimulus coding in S1 (refs. 2,10,11,13–15,25).

We refer to choice-relevant activity as decision signals to empha-
size that this activity is not a motor signal that triggers the choice 
action, but rather a signal that is used to make a choice. We consider 
decisions to be internal variables that carry task-relevant informa-
tion, for example, on the identity of the lickport associated to the 
stimulus presented, the occurrence of the go cue or the motivational 
state. Mice may make a decision with respect to the lickport that 
needs to be licked in a given trial but choose not to lick because the 
go cue has not occurred, or because they are not motivated to lick.

The hallmarks of the task we used to study decision signals in 
L2/3 of S1 are complex texture stimuli that require temporal inte-
gration by active sampling, two choices that are reported in similar 
ways and a cued task design with a temporal delay between stimulus 
and choice action. We favored the discrimination of complex stimuli 
due to the observation that simple tactile tasks might not critically 
depend on barrel cortex46. Unlike the detection of a touch event by 
a single whisker, the discrimination of textures of different rough-
ness requires active sampling and temporal integration of complex 
whisker kinetics such as acceleration and curvature3,47. In line with 
this, lesion studies in rats have shown that the ability to discriminate 
textures depends on barrel cortex48. Texture discrimination might 
require computations in L2/3 of S1 to convert complex and vary-
ing patterns of whisker kinetics into a simpler object-related code. 
Stimulus neurons, as described in our study, could report the output 
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of that transformation. The detection of a decision signal in S1 may 
be related to the fact that task-relevant signal transformation from 
sensory to an early and abstract decision variable is located in L2/3 
S1 under these task conditions.

To identify decision signals in primary sensory cortex, we need 
to be able to dissociate signals triggered by the choice action from 
decision signals that inform the choice. In widely used go/no go 
tasks, only one choice is associated with an action whereas the other 
choice is signaled by withholding of movement. A consistent activ-
ity modulation favoring ‘go’ trials16–19 could reflect choice-relevant 
activity or other aspects related to the choice action in ‘go’ trials, 
such as movement preparation, motivation, feedback from the 
movement or sensory input that results from the movement22. In 
V1, studies have demonstrated the existence of an activity differ-
ence between ‘go’ and ‘no go’ trials23 but an absence of choice-related 
activity in symmetric choice tasks22,24. Therefore, go/no go tasks can-
not definitively identify choice-related activity. Here, we recorded 
neural activity in mice performing a cued two-choice texture dis-
crimination task featuring choice actions with nearly identical 
motor patterns, which allowed us to extract decision signals in S1. 
We also used large-scale recordings across multiple barrels to detect 
even small functional subgroups of neurons. Furthermore, we used 
a GLM to demix running, whisking and choice signals and find that 
the timing of decision neurons is temporally aligned to the stimulus 
rather than the lick. We consider it unlikely that decision neurons 
are indeed sensory neurons weakly correlated with the choice action 
given the numerous categorical differences we find between stimu-
lus and decision neurons, that is, differences in spatial clustering, 
temporal activity patterns, trial-by-trial response variability and 
their functional connectivity within the local network. This distin-
guishes the stimulus neurons described here from sensory neurons 
found in, for example, monkey area MT that carry sensory informa-
tion and show a weak correlation to the choice of the monkey34,49.

The ultimate support for the claim that the decision signal 
described here is indeed involved in the decision-making process, 
and is not a signal carrying motor feedback or sensory input related 
to the choice action after the decision was made, is provided by our 
direct manipulation of the decision signal during behavior50,51. We 
find that when we increase the correct decision signal in L2/3 S1 
using targeted photostimulation in behaving mice, behavioral per-
formance is improved. This experiment establishes a causal link 
between neural activity and behavior and confirms a functional role 
of the decision signal in decision making.

The circuit organization of stimulus and decision neurons. Does 
the identification of stimulus and decision neurons imply two dis-
tinct neuronal subnetworks in S1? Classical literature suggests that 
decision signals could be generated in a purely feedforward man-
ner along the cortical processing stream by pooling across large 
groups of weakly choice-selective sensory neurons51,52. This implies 
that stimulus signals and a weak decision signal are encoded in the 
same neurons and that the strength of the choice signal increases 
as we move along the processing hierarchy. Here we find that L2/3 
of barrel cortex, a supposedly purely sensory processing area, con-
tains neurons with stimulus and choice-related information—more 
akin to what has been found in associative cortices like the lateral 
intraparietal area49. Even though stimulus and decision neurons are 
intermingled within the same local circuit they show differences in 
their local network integration. Stimulus neurons exhibit some spa-
tial clustering, while decision neurons in the same FOV are distrib-
uted randomly. Both subgroups show higher trial-by-trial response 
variability within each group than between groups, which could be 
due to recurrent connectivity or common feedback35–37.

Using targeted photostimulation to directly probe the functional 
connectivity in the local circuit, we find that stimulus selectivity of the 
photostimulation targets and their followers correlates. This suggests  

high like-to-like recurrent connections for stimulus coding in L2/3, 
and is consistent with recent studies in S1, V1 and ALM29–31,53. The 
recurrent excitation in L2/3 S1 may support stimulus identification 
by maintaining and amplifying the ‘bottom-up’, feedforward inputs 
from L4 containing information about the stimulus features rel-
evant to the task. In contrast, choice coding of the followers does 
not depend on that of the targets, which implies that the recur-
rent connectivity among neurons representing the same decision 
might be lower than those encoding the same stimulus. The shared 
trial-by-trial response variability between decision neurons might 
in this case be driven by common inputs from the local circuit, with 
contributions from long-range feedback connections from S1, M1, 
M2 and higher-order thalamus and neuromodulatory inputs38,54. 
This idea is further supported by higher activity of decision neurons 
outside of the sampling period in comparison to stimulus neurons, 
as well as the existence of more efficient excitatory inputs from local 
trial-coding neurons when activating trial-coding neurons. Taken 
together, although there is likely to be a continuum with respect to 
stimulus and choice coding across L2/3 S1, the ends of this putative 
continuum, that is, stimulus and decision neurons, show categori-
cal differences not only in the trial-coding dimension, but also in 
spatial clustering, activity patterns, timing, network integration and 
functional connectivity.

Implications for sensory processing. The classical concept that 
hierarchical processing involves a step-by-step feature extraction 
before a decision is made in higher-order areas has been extremely 
influential in guiding the field to explore the computations per-
formed during sensory processing1,9,55. Recent studies have sug-
gested the possibility that choice coding might already be present 
in L2/3 of S1 but were either lacking appropriate task design or 
direct manipulation to establish causal relevance of these signals 
for behavior. Our results show that a decision signal can indeed be 
present as early as L2/3 of S1 and, crucially, that the signal in deci-
sion neurons is causally relevant for task performance. This decision 
signal seems to represent a transformation of the sensory signal into 
choice categories. Freedman and Assad suggested the existence of 
such a categorical and abstract early decision signal in the primate 
brain, in contrast to intentional decision signals that are directly 
linked to the motor action56. We suggest that the signal carried by 
decision neurons in L2/3 S1 might represent such an abstract cat-
egorical decision signal.

Instead of just feature extraction following a strict processing 
hierarchy, primary sensory cortex might be passing on informa-
tion about extracted features in parallel with a categorical and 
task-relevant interpretation of the sensory signal. Following the 
concept suggested by Panzeri and colleagues57, this would mean 
that decision neurons carry features with a high intersection 
information and are therefore involved directly in driving behav-
ior, whereas stimulus neurons only present the stimulus identity 
and carry little intersection information. Alternatively, as sug-
gested by Churchland and colleagues58, feature extraction along 
the sensory pathway may not be isolated but could be modulated 
by top-down projections very early in the pathway. Interim deci-
sion variables could then influence downstream feature extraction 
as well as modulate behavior such as whisking to optimize task 
performance. The decision signals we describe could reflect the 
output of an intersection between sensory feature extraction and 
task-specific top-down modulation entering L2/3 S1. Studying the 
task-dependence of our results, the influence of top-down mod-
ulation on decision neuron activity as well as the temporal rela-
tionship between stimulus and decision neurons measured with 
high-density electrophysiological recordings will provide many 
avenues for future experiments.

In summary, our results demonstrate the existence and behav-
ioral relevance of decision coding as early as S1, challenging the 
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longstanding idea that S1 provides information on sensory inputs 
only2,10,11,13,14. Instead, an early decision signal carried by neurons 
intermingled with stimulus neurons within the same circuit, which 
has a direct impact on behavior suggests a key involvement of S1 
in the decision-making process through the encoding of an early 
categorical decision signal.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41593-022-01151-0.

Received: 2 May 2019; Accepted: 21 July 2022;  
Published online: 30 August 2022

References
	1.	 Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and 

functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 
(1962).

	2.	 Hernandez, A., Zainos, A. & Romo, R. Neuronal correlates of sensory 
discrimination in the somatosensory cortex. Proc. Natl Acad. Sci. USA 97, 
6191–6196 (2000).

	3.	 Arabzadeh, E., Zorzin, E. & Diamond, M. E. Neuronal encoding of texture in 
the whisker sensory pathway. PLoS Biol. 3, e17 (2005).

	4.	 Romo, R. & de Lafuente, V. Conversion of sensory signals into perceptual 
decisions. Prog. Neurobiol. 103, 41–75 (2013).

	5.	 Brody, C. D. & Hanks, T. D. Neural underpinnings of the evidence 
accumulator. Curr. Opin. Neurobiol. 37, 149–157 (2016).

	6.	 Hanks, T. D., Ditterich, J. & Shadlen, M. N. Microstimulation of macaque 
area LIP affects decision-making in a motion discrimination task. Nat. 
Neurosci. 9, 682–689 (2006).

	7.	 Kim, J.-N. & Shadlen, M. N. Neural correlates of a decision in the 
dorsolateral prefrontal cortex of the macaque. Nature 2, 176–185  
(1999).

	8.	 Horwitz, G. D. & Newsome, W. T. Separate signals for target selection  
and movement specification in the superior colliculus. Science 284, 
1158–1161 (1999).

	9.	 Barlow, H. B. in Sensory Communication (ed. Rosenblith, W. A.) Ch. 13 (MIT 
Press, 2012).

	10.	Rossi-Pool, R. et al. Emergence of an abstract categorical code enabling the 
discrimination of temporally structured tactile stimuli. Proc. Natl Acad. Sci. 
USA 113, E7966–E7975 (2016).

	11.	de Lafuente, V. & Romo, R. Neural correlate of subjective sensory experience 
gradually builds up across cortical areas. Proc. Natl Acad. Sci. USA 103, 
14266–14271 (2006).

	12.	Romo, R., Hernandez, A., Zainos, A., Lemus, L. & Brody, C. D. Neuronal 
correlates of decision-making in secondary somatosensory cortex. Nat. 
Neurosci. 5, 1217–1225 (2002).

	13.	Fassihi, A., Akrami, A., Pulecchi, F., Schonfelder, V. & Diamond, M. E. 
Transformation of perception from sensory to motor cortex. Curr. Biol. 27, 
1585–1596 (2017).

	14.	Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. 
Neuron 81, 179–194 (2014).

	15.	McGuire, L. M. et al. Short time-scale sensory coding in S1 during 
discrimination of whisker vibrotactile sequences. PLoS Biol. 14,  
e1002549 (2016).

	16.	Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, 
C. C. Membrane potential correlates of sensory perception in mouse barrel 
cortex. Nat. Neurosci. 16, 1671–1677 (2013).

	17.	Kwon, S. E., Yang, H., Minamisawa, G. & O’Connor, D. H. Sensory and 
decision-related activity propagate in a cortical feedback loop during touch 
perception. Nat. Neurosci. 19, 1243–1249 (2016).

	18.	Yang, H., Kwon, S. E., Severson, K. S. & O’Connor, D. H. Origins of 
choice-related activity in mouse somatosensory cortex. Nat. Neurosci. 19, 
127–134 (2016).

	19.	Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L. & Helmchen, F. 
Behaviour-dependent recruitment of long-range projection neurons in 
somatosensory cortex. Nature 499, 336–340 (2013).

	20.	Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. 
Single-trial neural dynamics are dominated by richly varied movements. Nat. 
Neurosci. 22, 1677–1686 (2019).

	21.	Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide 
activity. Science 364, 255 (2019).

	22.	Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed 
coding of choice, action and engagement across the mouse brain. Nature 576, 
266–273 (2019).

	23.	Poort, J. et al. Learning enhances sensory and multiple non-sensory 
representations in primary visual cortex. Neuron 86, 1478–1490 (2015).

	24.	Scott, B. B. et al. Imaging cortical dynamics in GCaMP transgenic rats with a 
head-mounted widefield macroscope. Neuron 100, 1045–1058 (2018).

	25.	Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive fields of reconstructed 
pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J. Physiol. 
553, 243–265 (2003).

	26.	Nienborg, H. & Cumming, B. Correlations between the activity of sensory 
neurons and behavior: how much do they tell us about a neuron’s causality. 
Curr. Opin. Neurobiol. 20, 376–381 (2010).

	27.	Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional 
significance of decision-related activity in the primate dorsal stream. Nature 
535, 285–288 (2016).

	28.	Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution 
optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 
1816–1824 (2014).

	29.	Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling 
visually guided behavior by holographic recalling of cortical ensembles. Cell 
178, 447–457(2019).

	30.	Daie, K., Svoboda, K. & Druckmann, S. Targeted photostimulation uncovers 
circuit motifs supporting short-term memory. Nat. Neurosci. 24, 259–265 
(2021).

	31.	Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering 
perception. Science 365, eaaw5202 (2019).

	32.	Russell, L. E. et al. All-optical interrogation of neural circuits in behaving 
mice. Nat. Protoc. 17, 1579–1620 (2022).

	33.	Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular  
resolution map of barrel cortex activity during tactile behavior. Neuron 86, 
783–799 (2015).

	34.	Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. 
A. A relationship between behavioral choice and the visual response of 
neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

	35.	Okun, M. et al. Diverse coupling of neurons to populations in sensory cortex. 
Nature 521, 511–515 (2015).

	36.	Ko, H. et al. Functional specificity of local synaptic connections in neocortical 
networks. Nature 473, 87–91 (2011).

	37.	Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical  
neurons: Implications for connectivity, computation, and information coding. 
J. Neurosci. 18, 3870–3896 (1998).

	38.	Chen, J. L. et al. Pathway-specific reorganization of projection  
neurons in somatosensory cortex during learning. Nat. Neurosci. 18, 
1101–1108 (2015).

	39.	Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical 
computation. Neuron 100, 424–435 (2018).

	40.	Russell, L. E. et al. The influence of visual cortex on perception is modulated 
by behavioural state. Preprint at bioRxiv https://doi.org/10.1101/706010 
(2019).

	41.	& Dalgleish, H. W. P. et al. How many neurons are sufficient for perception of 
cortical activity?. eLife 9, e58889 (2020).

	42.	Robinson, N. T. M. et al. Targeted activation of hippocampal place cells 
drives memory-guided spatial behavior. Cell 183, 1586–1599 (2020).

	43.	Chettih, S. N. & Harvey, C. D. Single-neuron perturbations reveal 
feature-specific competition in V1. Nature 567, 334–340 (2019).

	44.	Hong, Y. K., Lacefield, C. O., Rodgers, C. C. & Bruno, R. M. Sensation, 
movement and learning in the absence of barrel cortex. Nature 561,  
542–546 (2018).

	45.	Kawai, R. et al. Motor cortex is required for learning but not for executing a 
motor skill. Neuron 86, 800–812 (2015).

	46.	Park, J. M. et al. Deep and superficial layers of the primary somatosensory 
cortex are critical for whisker-based texture discrimination in mice. Preprint 
at bioRxiv https://doi.org/10.1101/2020.08.12.245381 (2022).

	47.	Wolfe, J. et al. Texture coding in the rat whisker system: slip-stick versus 
differential resonance. PLoS Biol. 6, e215 (2008).

	48.	Guic-Robles, E., Jenkins, W. M. & Bravo, H. Vibrissal roughness 
discrimination is barrelcortex-dependent. Behav. Brain Res. 48,  
145–152 (1992).

	49.	Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. 
Proc. Natl Acad. Sci. USA 93, 628–633 (1996).

	50.	Nienborg, H., Cohen, M. R. & Cumming, B. G. Decision-related activity in 
sensory neurons: correlations among neurons and with behavior. Annu Rev. 
Neurosci. 35, 463–483 (2012).

	51.	Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the 
physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

	52.	Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A 
computational analysis of the relationship between neuronal and behavioral 
responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

Nature Neuroscience | VOL 25 | September 2022 | 1225–1236 | www.nature.com/natureneuroscience 1235

https://doi.org/10.1038/s41593-022-01151-0
https://doi.org/10.1038/s41593-022-01151-0
https://doi.org/10.1101/706010
https://doi.org/10.1101/2020.08.12.245381
http://www.nature.com/natureneuroscience


Articles NATurE NEuroSciEncE

	53.	Peron, S. et al. Recurrent interactions in local cortical circuits. Nature 579, 
256–259 (2020).

	54.	Condylis, C. et al. Context-dependent sensory processing across  
primary and secondary somatosensory cortex. Neuron 106,  
515–525 (2020).

	55.	Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the 
primate. Cereb. Cortex 1, 1–47 (1991).

	56.	Freedman, D. J. & Assad, J. A. Neuronal mechanisms of visual  
categorization: an abstract view on decision making. Annu Rev. Neurosci. 39, 
129–147 (2016).

	57.	Panzeri, S., Harvey, C. D., Piasini, E., Latham, P. E. & Fellin, T. Cracking the 
neural code for sensory perception by combining statistics, intervention, and 
behavior. Neuron 93, 491–507 (2017).

	58.	Churchland, P. S., Ramachandran, V. S. & Sejnowski, T. J. in Large-Scale 
Neuronal Theories of the Brain (eds Koch, C. & Davis, J. L.) Ch. 2  
(MIT Press, 1994).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to 
this article under a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article is solely governed 
by the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022, 
corrected publication 2022

Nature Neuroscience | VOL 25 | September 2022 | 1225–1236 | www.nature.com/natureneuroscience1236

http://www.nature.com/natureneuroscience


ArticlesNATurE NEuroSciEncE

Methods
Mice. All animal procedures approved by the local Animal Welfare and Ethical 
Review Board at University College London and performed under license from 
the UK Home Office in accordance with the Animals (Scientific Procedures) 
Act 1986. We used transgenic mice expressing GCaMP6s59 in excitatory neurons 
(EMX1-Cre; CaMKIIa-tTA; Ai94 (Jax catalog nos. 027784, 007004 and 024104) and 
CaMKIIa-tTA; tetO-G6s (Jax catalog nos. 007004 and 024742)) for calcium imaging 
experiments and C57Bl/6J (Charles River Laboratories) for targeted photostimulation 
experiments. All EMX1-Cre; CaMKIIa-tTA; Ai94 mice were treated with doxycycline 
administered orally in the drinking water to prevent expression of GCaMP6s during 
development60 and were checked for aberrant activity (Wide-field imaging). A 
solution of 5% sucrose and 2 mg ml–1 doxycycline in tap water was given as drinking 
water from birth up until 7 weeks of age. Mouse age ranged from 8 to 36 weeks on the 
days of experiments and were of either sex. Mice were group-housed before surgery 
and single-housed after surgery. Mice were kept at a normal or reversed 12 h dark/
light cycle at a temperature of 22 °C and 62% humidity.

Surgery. Mice were anesthetized using Isoflurane (0.5–2%) and injected with 
0.1 mg kg–1 buprenorphine hydrochloride (Vetergesic) and 5 mg kg–1 Carprofen 
(Rimadyl). A metal headplate with a 5 mm circular imaging well was fixed 
to the skull overlying somatosensory cortex with dental acrylic (Super-Bond 
C&B, Sun-Medical). A craniotomy was drilled above S1 (right hemisphere, 
1.6 mm posterior and 3.5 mm lateral of bregma). For targeted photostimulation 
experiments, 0.9–1 µl of a mixture of AAV1-syn-jGCaMP7f-WPRE61 (dilution 
1:15), AAV9-FLEXED-C1V1-Kv2.1-mRuby2 (ref. 43) (dilution 1:30) and 
pENN-AAV-CaMKII-0.4Cre-SV40 (dilution 1:15) at a ratio of 2:1:2 was injected 
into L2/3 (~300 µm deep at 0.1 µl min–1). The dura was removed after virus injection. 
A cranial window, composed of either a 3 mm circular glass coverslip glued to a 
2 mm square glass with UV-curable optical cement (NOR-61, Norland Optical 
Adhesive) or a 4 mm circular glass coverslip was press-fit into the craniotomy and 
sealed using Vetbond before fixing it with dental acrylic. At the earliest 1 week after 
the surgery mice were water restricted to increase motivation for task training.

Wide-field imaging. After a minimum of 1 week after surgery wide-field imaging 
was performed at 15 Hz using a 470 nm LED (M470L3, Thorlabs) to illuminate 
the area. Imaging was performed using an ORCA-Flash 4.0 v.3 (Hamamatsu) 
camera and a ×4 microscope objective (×4 Nikon Plan Fluorite Imaging Objective, 
0.13 numerical aperture (NA), 17.2 mm working distance). Excitation light 
passed through an aspheric condenser lens (ACL2520U-DG15, Thorlabs), a filter 
(ET470/40, Chroma) and was reflected into the light path by a 495 nm longpass 
dichroic (FF495-Di03-25 × 36, Semrock) to reach the brain. Emitted light passed 
through the same 495 nm longpass dichroic as well as a 749 nm shortpass dichroic 
(FF749SDi01-25 × 36 × 3, Semrock) and an emission filter (HQ525/50, Chroma) 
before reaching the camera. Spontaneous activity of awake mice running freely on 
a treadmill was acquired for 2–4 min to exclude the occurrence of aberrant activity 
in transgenic mice60. Calcium signal time series were obtained from the average 
pixel intensity.

To locate the barrels in the FOV, single whiskers were threaded into a glass 
capillary and deflected 10–30× for 1 s with a piezo oscillating at 10 Hz (sinusoidal) 
every 10 s while performing wide-field imaging as described above. To locate the 
barrel centers, we calculated event-triggered averages of the movies by aligning the 
frames to the start of the whisker deflections using custom-written Python scripts.

High-speed videography. We used a Mako U-029B (Allied Vision) camera to 
record whisker movements under IR illumination at 100–200 Hz. The data were 
streamed and recorded using the software package 2ndLook (IO Industries). We 
used DeepLabCut v.1.0 (ref. 62) to label the two most prominent whiskers in every 
frame across a subset of sessions (nine mice, two sessions each). We calculated the 
average whisker angle based on the average of the angle of the two whiskers  
in each frame to reflect the movement of the whisker pad. To extract the first 
whisker touch we trained another set of models to detect the texture stimulus in 
the movie. First whisker touch was defined as the first imaging frame of the  
trial in which texture stimulus and whiskers were closer than 22 pixels (based on 
visual inspection).

Texture discrimination task. Behavioral training was carried out in training 
boxes or under the two-photon microscopes which were equipped with the same 
training apparatus63. A 2.5 × 2.5 cm2 piece of sandpaper (DOM’s DIY direct, 
Amazon) was attached to four of the six arms of a custom-built plastic hexagon 
array with protruding arms. Sandpapers used for training and imaging were 
S of P1200 or P3000, R of P60 or P100 and S2 of 400 or 600, R2 of 180. To adjust the 
ratio of Correct and Incorrect trials, sandpapers used in targeted photostimulation 
experiments varied with S of P180/320/600/1500 or 3000 and R of 60 or 120. To 
rotate the selected sandpaper into position the hexagon was mounted onto a 
rotating stepper motor (X-NMS17C-PTB2, Zaber Technologies Inc.). The number 
of steps of the rotating stepper motor to rotate the selected sandpaper into position 
was matched, such that every transition featured the same number of movements. 
Once it reached its final position, the sandpaper was moved towards the mouse 
by mounting the stepper motor onto a linear stage (X-LSM050B-KX12AG or 

LSM100B-T4-MC04 with X-MCB1-KX12BG Controller, Zaber Technologies 
Inc.). Both motors were controlled using a microcontroller and Arduino software 
(Arduino IDE). The mouse was allowed to lick one of the two lickports in front 
of it with the sound of go cue (100–200 ms, 6 kHz). Licks were detected by 
closing an electrical circuit. All signals were controlled and displayed using the 
custom-written software PyBehavior (Lloyd Russell, https://github.com/llerussell/
PyBehavior). Licking the correct lickport triggered a solenoid valve (225PNC1-
11, NResearch) to release water rewards consisting of 2–4 µl drops of sugar water 
(10% sucrose in drinking water). Licking in the withhold window 1 s before the go 
cue triggered 1 s of white noise as well as a 3–5 s time-out. Mice were in the dark 
and freely running on a circular Styrofoam treadmill during training and imaging 
sessions. The behavior and imaging data were synchronized using PackIO64. In 
targeted photostimulation experiments, the motor carrying the sandpaper was 
moved in at a slightly slower speed and the go cue was triggered at 4 s into the trial 
instead of 3 s.

Training was performed in stages. After habituation to the trainer and the 
head fixation, water drops were delivered until mice readily licked both lickports. 
In the next training stage, the sandpapers were presented to the whiskers followed 
by an auto-reward 200 ms after the go cue to passively pair the texture with the 
lickport. Textures were presented in blocks with decreasing repeats. Once a mouse 
respected the withhold period and started to lick the lickports after the go cue the 
auto-reward was removed. Mice that were licking the lickports after the go cue 
and showed signs of correctly predicting the lickport that is associated with the 
presented texture were moved on to the final training stage. Here, the textures were 
presented randomly with equal probability. Trials lasted for 7 s with a variable delay 
of 0–1 s in between trials. Mice were trained or imaged no more than once per day 
until most Miss trials indicated satiety.

Two-photon calcium imaging. Two-photon calcium imaging was performed 
on a custom-build microscope equipped with a resonant scanning module 
(LSK-GR08, Thorlabs), GaAsP photomultiplier tube (Hamamatsu) and a ×16, 0.8 
NA microscope objective (Nikon) using ThorImage 3.1 (Thorlabs). We used a 
Ti-Sapphire laser (Mai Tai HP, Spectra Physics) to excite GCaMP6 at 920 nm. The 
FOV was 798 × 798 µm2 (512 × 512 pixels) and images were acquired at 30 Hz for 
single-plane recordings and at 5 Hz for multiplane recordings. For multiplane 
recordings, the objective was moved between frames using a piezo objective 
scanner (PFM450E, Thorlabs). The piezo was allowed to settle for 35 ms in the new 
z position before the next frame was recorded.

Targeted photostimulation and simultaneous two-photon calcium imaging. 
Simultaneous calcium imaging and photostimulation was performed using 
an ‘all-optical’ microscope32,65. Two-photon imaging (512 × 512 pixels per 
frame, 30 Hz) of L2/3 barrel cortex (around 100–300 µm deep) was performed 
by resonant-galvanometer raster scanning a femtosecond-pulsed laser beam 
(wavelength 920 nm or 765 nm, Chameleon Ultra II, Coherent, output power 
2–4 W) across FOVs of 416 × 416 µm2. A ×16, 0.8 NA objective (Nikon) was 
used for all experiments. GCaMP7f was imaged with an excitation wavelength 
of 920 nm and mRuby (fluorophore coupled with opsin) with 765 nm (power on 
sample, 40–50 mW). The excitation source for the photostimulation path was a 
femtosecond-pulsed laser fixed at 1,030 nm (Satsuma HP2, Amplitude; average 
output, 20 W; pulse width, 280 fs; repetition rate, 2 MHz). A reflective multilevel 
phase spatial light modulator was used to display holograms (OverDrive Plus 
SLM, Meadowlark Optics/Boulder Nonlinear Systems; 7.68 × 7.68 mm2 active 
area, 512 × 512 pixels, optimized for 1,064 nm). The weighted Gerchberg-Saxton 
algorithm66 was used to calculate holograms to be displayed on the SLM and 
the weights were adjusted to compensate for the difference in diffraction 
efficiency between holographic spots. An acousto-optic modulator (AOM, 
MCQ80-A2-L1064-Z32) was used for modulating photostimulation power.

A custom Python-based, real-time all-optical interface (pyRTAOI, written in 
Python v.3.6 with PyQt5, developed in Spyder v.3.2.4) was used for online image 
analysis and photostimulation control. Raw data streaming from the microscope 
system (Prairie View, Bruker Corporation) was first organized into 512 × 512 
frames accelerated by a GPU (NVIDIA GeForce GTX 750 Ti) and then passed 
to the calcium imaging analysis toolbox, CaImAn (2018 version)67, for online 
motion-correction, neuronal signal extraction and denoising. Photostimulation 
pattern and power were controlled by a custom SLM control interface (written  
in C++ with Qt 5.9, developed in Microsoft Visual Studio 2013). The power 
control is synchronized with spiral scanning by the microscope system by  
voltage pulse triggers.

Calcium traces extracted online by CaImAn were used for quick analysis on 
the day of experiments. Quality of each region of interest (ROI) was assessed with 
a convolutional neural network based method67. Cells were first detected from 
the live imaging stream while the mouse started performing the task (normally 
around 150–250 ROIs were detected in 15–25 min). Imaging and behavioral 
recording started after the animal made consecutive correct transitions between 
the two lickports and the rate of Early lick trials decreased. Before experiments, 
we trimmed the whiskers, leaving three to six principal whiskers corresponding 
to the barrels in the FOV with coexpression of GCaMP and C1V1 to minimize 
task-relevant activity outside of the photostimulatable area (Fig. 6c). First, a 
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baseline imaging session consisting of 150 trials was used for mapping functional 
identity of cells in the FOV and for building choice decoders. Next, to test which 
trial-coding neurons can be activated optogenetically, a short photostimulation 
pulse (9 × 10 ms spirals, 15–20 µm in diameter, 7–8 mW per cell) was sent onto 
each texture-selective cell in a random sequence (0.5 s interstimulus interval, 10–15 
repeats per cell). The stimulation power was chosen such that the two-photon 
activation efficacy matches that in the calibrated data65 (20–80 mW, pulse repetition 
rate, 80 MHz, pulse width, 300 fs; Supplementary Figs. 2 and 3). Trial-coding 
neurons that show a reliable calcium response to photostimulation (z-scored area 
under the ROC curve (AUC) > 1 and response amplitude > 1) were grouped by 
trial preference into two functional target ensembles (Extended Data Fig. 8). In a 
subset of sessions, extra photostimulation conditions were added in the catch trials, 
where photostimuli were targeted directly at identified stimulus or choice-selective 
neurons to increase the range of choice and stimulus selectivity in the target 
ensemble. In a random set of catch trials (around 15–20% of all trials in a session), 
either of the two target ensembles was selectively stimulated 600 ms before go cue 
(9 × 10 ms spirals, 7–8 mW per cell; Fig. 6).

During texture trials (Fig. 7), calcium activity recorded from trial-coding 
neurons was projected onto a choice decoder that attempts to predict the upcoming 
choice that the animal is going to make. Specifically, two-choice decoders (for 
S and R trials, respectively) were built based on logit models fit to the first 4–5 
demixed principal components of the calcium activity of trial-coding neurons 
in the withhold window (dPCA68). In each trial, the decoder prediction will be 
queried during a short time-window in the withhold period (five imaging frames, 
600 ms to 433 ms before go cue; Extended Data Fig. 10g). In half of the trials 
when the choice was predicted to be incorrect during the query window, a brief 
photostimulation (9 × 10 ms spirals, 7–8 mW per cell, 567 ± 41 ms before go cue, 
mean ± s.d.) was delivered to the target ensemble that prefers the same texture as 
that being presented to the animal (PhotoBoost). In one-third of the trials when the 
choice was predicted to be correct (that is, the absence of an incorrect prediction 
during the query window), photostimulation of the same power and duration will 
be delivered immediately at the end of the query window to the target ensemble 
that encodes the other texture which is associated with the incorrect choice 
(PhotoDisrupt). To increase the chance of a behavioral effect despite limitations 
in trial numbers, we used a classifier for online prediction of the trial outcome 
based on trial-coding neuron activity before the photostimulation40,69. Using this 
classifier, it was slightly more likely for PhotoBoost photostimulation to occur 
in Incorrect trials and PhotoDisrupt photostimulation to occur in Correct trials. 
In five sessions, the conditions were swapped with respect to the PhotoBoost 
and PhotoDisrupt stimulation, meaning that the target ensemble preferring the 
texture associated with the incorrect (or correct) choice was activated when the 
predicted choice is about to be correct (or incorrect). Overall, the online predictor 
performance does not correlate with the targets’ choice selectivity (Extended 
Data Fig. 10h). Again, this was done to extend the sampling range of choice and 
stimulus selectivity of the target ensemble. The online choice prediction accuracy 
is slightly better than chance (the fraction of Correct trials in the control trials 
for PhotoDisrupt is 4% higher than random, P = 0.016; the fraction of Incorrect 
trials in the control trials for PhotoBoost is 15% higher than random, P = 0.009, 
Wilcoxon signed-rank test). Catch trials and texture trials were randomly 
interleaved in a session.

To rule out the possibility that the animal might be able to hear the 
photostimulation laser scanners, spiral scanning started 1 s before the withhold 
period and continued until the end of the reward period in every trial, such that 
the only difference between photostimulation and corresponding control trials 
is the photostimulation laser power controlled by the AOM via an analog output 
device (NI-DAQmx. PCI-6713, National Instruments).

Data analysis. Data processing, session selection and trial selection. For Figs. 1–5, 
ROIs corresponding to individual neurons were selected and calcium signals were 
extracted, neuropil-corrected and deconvolved using Suite2P for MATLAB70. 
All further measures of neural activity are based on deconvolved calcium traces 
unless indicated otherwise. Behavioral data were analyzed with custom-written 
MATLAB scripts. Imaging sessions were selected based on imaging depth, 
behavioral performance and number of trials. All imaging sessions were recorded 
at a depth between 100 µm and 200 µm below the surface (Supplementary Fig. 
4). Sessions were included if mice performed more than 80% discrimination 
(Correct/(Correct + Incorrect)) in at least one window of 50 trials with at least 12 
response trials (Correct and Incorrect), which indicates that they are proficient 
in the task. Every mouse that reached this criterion at least once is considered an 
expert mouse. Every imaging session included had at least 20 Correct trials and 
5 Incorrect trials for Stim S and Stim R each. The difference in timing of the first 
lick with respect to the trial start when comparing Stim S and Stim R trials was 
below 500 ms. Unless otherwise indicated, trials that fall within a period of strong 
lickport bias were removed from the analysis. This is done to remove variability in 
the population of Correct trials and reduce the number of false-positive Correct 
trials that are random licks of a certain lickport and not a lick that was triggered as 
a result of perceptual decision making. Behavioral discrimination (Correct trials/
(Correct + Incorrect trials)) is higher in unbiased trials compared with biased trials 
but the procedure has only a very small effect on the identification of stimulus and 

decision neurons (Supplementary Fig. 4). To identify lickport bias we analyzed 
periods of ten trials in a sliding window. Whenever there were more than five 
trials that were either Correct or Incorrect (that is with lick responses only in the 
response window) but more than 90% of all first licks were directed to the same 
port—this period of ten trials was labeled as biased. Trials on which a reward was 
triggered manually for training purposes were removed from the analysis.

For Figs. 6 and 7, calcium traces from all imaging sessions recorded on the 
same day were concatenated, extracted and neuropil-corrected using Suite2P. 
Calcium traces were z-scored and normalized to the baseline level for each 
trial (1 s from the beginning of the trial) to obtain ΔFz-scored. Cells with spatial 
footprints more than 30% overlapping with a 40-pixel (32.5 µm) diameter 
circular mask centered at the centroids of the photostimulation spirals were 
taken as light-targeted cells (Extended Data Fig. 8b). Sessions with overall texture 
discrimination (number of Correct trials/(number of Correct trials + number of 
Incorrect trials)) below 0.6 were excluded from analysis. All trials in the baseline 
behavioral session and one-quarter of the control trials randomly selected in the 
stimulation behavioral session were used for evaluating functional identity (that 
is, trial, stimulus and choice selectivity) of each neuron. The remaining trials in 
the all-optical session were used for assessing photostimulation and behavioral 
effects. Photostimulation or control conditions with fewer than eight trials 
where the animal made a choice during the reward period were excluded from 
behavioral analysis. Signals in frames during photostimulation (90 ms) may contain 
light-stimulation artifacts and thus were removed and linearly interpolated with 
values pre- and postphotostimulation. Frames in a 300-ms window immediately 
before the go cue were used for measuring photostimulation response.

All light-targeted cells that showed significantly higher response in the 
photostimulation trials than the no-photostimulation trials (z-scored AUC > 1.64) 
were taken as directly activated targets (Extended Data Fig. 9f). Photostimulation 
conditions where the number of directly activated cells is less than 40% of the 
number of target spots were excluded from analysis. Background cells (that is, all 
cells outside the light-targeted zones) that showed significantly higher or lower 
response in photostimulation trials compared with no-photostimulation trials 
(z-scored AUC > 1.64 or <−1.64) were taken as positive or negative followers, 
respectively (on average, 7.6 ± 4.1 positive followers and 13.9 ± 7.7 negative 
followers per photostimulation condition, mean ± s.d., Extended Data Fig. 10a).

Neuron type identification. Neurons were classified using ROC analysis as 
well as a Gaussian GLM in a subset of sessions with whisking and running 
information. Classification obtained using ROC analysis was used for all figures 
unless otherwise indicated. For the ROC analysis, we computed an ROC curve 
by varying the activity (1 s before the lick, Figs. 1–5; or 1 s before go cue, Figs. 6 
and 7) threshold and sorting responses into S and R trials. We then calculated 
the absolute difference of the AUC from 0.5. To evaluate significance, we shuffled 
the trial labels and calculated 200 AUCs. If the true AUC was more than 1.64 s.d. 
away from the mean of the shuffled distribution, then the neuron was considered 
to discriminate S from R trials. Neurons that can discriminate S from R trials only 
considering Correct trials were classified as ‘trial-coding neurons’. Neurons that 
can discriminate S from R trials in Correct and Incorrect trials and prefer the 
same stimulus type were classified as ‘stimulus neurons’. Preference of the same 
stimulus is defined as a higher mean firing rate for the same stimulus in Correct 
and Incorrect trials. Neurons that can discriminate S from R trials in Correct 
and Incorrect trials and prefer different stimulus types but the same choice were 
classified as ‘decision neurons’. We computed the false-positive rate for each neuron 
type by shuffling the trial labels 100 times per neuron. The false-positive rate using 
this ROC analysis is 0.27% ± 0.004% for stimulus neurons and decision neurons 
and 4.6% ± 0.06% for trial-coding neurons (n = 77 FOVs, mean ± s.e.m.).

We built a Gaussian GLM (with identity link function) with four regressors 
(‘stimulus’, ‘choice’, ‘running’ and ’whisking’) to predict the average trial activity 
1 s before the lick. For each neuron, we trained ten models using all four 
regressors in Correct and Incorrect trials with twofold crossvalidation for an 
estimate of the mean prediction accuracy of the full model. We used ridge 
regression with a lambda of 0.1. We quantified the performance of the model 
by calculating the Pearson correlation between the real trial activity and the 
predicted trial activity. The mean Pearson correlation coefficient of the full model 
was then compared with the mean Pearson correlation of four reduced models 
in which one of the regressor vectors was randomized each. To test the unique 
contribution of each regressor to the trial activity of the neuron, we shuffled 
the regressor vector 400 times and trained the model as described before. We 
considered a neuron to code for stimulus, choice, running or whisking if the 
mean coefficient of the full model was more than 1.64 s.d. higher than the mean 
coefficient of the reduced model.

To visualize the distribution of significant correlation coefficients (that is, 
unique regressor associations) across all neurons, we reduced dimensionality using 
t-distributed stochastic neighbor embedding (t-SNE). We used the ‘tsne’ MATLAB 
function with a Mahalanobis distance metric and otherwise default settings.

In eight out of ten sessions, we identified more decision neurons using the 
ROC algorithm compared with the GLM analysis. In these sessions, 65% ±3% of 
neurons identified using GLM analysis were also identified using ROC analysis 
(mean ± s.e.m., n = 8 sessions).
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Stimulus and choice selectivity. To compute stimulus selectivity we obtained the 
AUC values (Stim S versus Stim R) in Correct and Incorrect trials as described 
above and calculated the difference from 0.5. Each neuron therefore has a stimulus 
selectivity in Correct and a stimulus selectivity in Incorrect trials. To compute 
choice selectivity, we obtained the AUC values (Correct versus Incorrect) in Stim S 
and Stim R trials and calculated the difference from 0.5. Each neuron has a choice 
selectivity in Stim S and a choice selectivity in Stim R trials.

Shared trial-by-trial response variability. To compute the trial-by-trial 
variation71,72 to the same stimulus we subtracted the mean activity in a 1-s window 
before the lick across all Correct trials with the same stimulus before calculating 
the pairwise correlation coefficient between all neurons, all stimulus neurons, all 
decision neurons or between pairs of stimulus and decision neurons. All sessions 
with more than five stimulus and decision neurons were included.

Spatial clustering. To quantify spatial clustering, we calculated the pairwise spatial 
distances between stimulus neurons or decision neurons in each FOV with at least 
five neurons of each type. The mean pairwise spatial distance was compared to the 
mean pairwise distance of a shuffled distribution (200×) containing an equivalent 
number of neurons from the entire population that was selected randomly. We 
then calculated the z-score between the pairwise spatial distance of stimulus or 
decision neurons and the shuffled distribution. A distribution of z-scores around 0 
indicates that pairwise distances are not different from randomly selected neurons 
in the FOV.

Analysis of the timing of activity. To analyze the timing of activity in stimulus and 
decision neurons (Fig. 3), only single-plane imaging sessions at 30 Hz were used 
(nine mice, 35 sessions). Mean-event amplitude was averaged across trials  
for every neuron and then averaged for every session. Statistics were computed 
across sessions.

Analysis of four-texture learning sessions. For four mice that were successfully 
trained on the four-texture discrimination task (Fig. 4), we selected the first 
four-texture training session as well as the session with best task performance 
for analysis (expert). Neuron identification was conducted as before using only 
Correct S and R trials.

Analysis of Miss trials. To separate Miss trials into trials with and without 
stimulus information in each session (Fig. 5), we trained a linear classifier to 
predict the stimulus presented in Correct trials based on the activity of stimulus 
neurons. Correct stimulus R and stimulus S trials were balanced before training. 
Only sessions with at least five stimulus neurons were included. For each Miss 
trial, we compared the classification score achieved by the linear classifier to the 
distribution of classification scores achieved by a linear classifier trained with 
shuffled trial labels (500×). If the stimulus prediction was better than chance as 
represented by the shuffled distribution of classification scores, a Miss trial was 
labeled Miss Stimulus+, that is, a Miss trial with stimulus information in the 
population of stimulus neurons. Otherwise it was labeled Miss Stimulus–, that is, 
a Miss trial without stimulus information in the population of stimulus neurons. 
The number of Miss trials increases towards the end of a session with more 
Miss Stimulus– trials than Miss Stimulus+ trials later in the session (Fig. 5c and 
Extended Data Fig. 7a). We used the same classifier to calculate the prediction 
accuracy in Correct, Miss Stimulus– and Miss Stimulus+ trials based on stimulus 
neuron activity. We then trained a similar linear classifier using decision neuron 
activity to predict the trial type. Despite the lack of an active choice, we argue 
that expert mice can discriminate the textures. Therefore, most trials with a 
conclusive stimulus signal should lead to a correct choice. If decision neuron 
activity contained choice information, it should yield a prediction accuracy 
different from chance. To test the performance of the classifiers against chance, 
we computed shuffled distributions (100×) by shuffling trial labels and compared 
the accuracy of the classifiers with the shuffled distribution.

Analysis of behavioral performance following targeted photostimulation. 
To assess the impact of targeted photostimulation on behavior (Fig. 7), we 
stimulated the target ensembles as described above. ‘PhotoBoost’ trials were 
compared with the other putatively Incorrect trials where the identical triggering 
procedure was enabled but the photostimulation power was set to zero (control 
trials). The ‘PhotoDisrupt’ trials were compared with the other putatively Correct 
trials as controls (control trials). We used ‘leave-one-out’ crossvalidation to 
measure behavioral change and target selectivity with different sets of trials to 
rule out the possibility that any observed correlation between the change in 
texture discrimination performance and the functional identity of the activated 
targets may reflect a natural cofluctuation between the variables. Specifically, 
for each pair of photostimulation control conditions, we take one trial from the 
photostimulation trial set and one trial from the control trial set and compare their 
trial outcome (giving −1, 0 or 1). We then used the rest of the photostimulation 
and control trials in the two trial sets to find the activated targets and calculated 
their stimulus or choice selectivity using the trials previously preserved for 
measuring functional identity (that is, all trials in the baseline behavioral session 

and one-quarter of the control trials in the all-optical session, which were not used 
for measuring photostimulation effects). This procedure was repeated 100 times 
and the average change in discrimination and the average target selectivity were 
taken as the final result.

Statistics and reproducibility. No statistical methods were used to predetermine 
sample size. Our sample sizes are similar to those reported in previous 
publications19,29,30. Data analysis was conducted in MATLAB. Statistical tests 
were done using a Wilcoxon rank sum test (MATLAB ‘ranksum’), Wilcoxon 
signed-rank test for paired data (MATLAB ‘signrank’) or Kruskal–Wallis 
one-way ANOVA test for comparison between more than two groups (MATLAB 
‘kruskalwallis’). No randomization of experimental subjects was necessary as 
all mice were trained and recorded under the same conditions. Data collection 
and analysis were not performed blind to the conditions of the experiment, but 
analysis relied on code that was standardized for all experimental conditions. 
Data distributions were not assumed to be normally distributed and all statistical 
comparisons between groups of continuous variables were performed using 
nonparametric tests. Adjustments for multiple comparisons were not made 
unless stated otherwise. No mice were excluded from the analysis unless they did 
not learn the task, data could not be collected due to poor GCaMP expression 
or occlusion of the chronic window. All other exclusion of trials or sessions are 
mentioned in the methods section.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
The analysis code used in this study are available from the corresponding authors 
upon reasonable request.
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Extended Data Fig. 1 | Behavioral performance of expert mice in the two-choice two-texture discrimination task. Behavioral performance in all sessions 
of all mice (n = 13 mice) included in the analysis (excluding experiments using targeted photostimulation). Mean discrimination was calculated as 
percentage of Correct trials over all Correct and Incorrect trials. Maximum discrimination was calculated in a sliding window of 50 trials containing at least 
12 trials with responses (Correct or Incorrect). Data are presented as mean values ± s.e.m.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Stimulus and choice selectivity in L2/3 S1 neurons. (a) ROC curves in an example stimulus and an example decision neuron. The 
stimulus neuron prefers Stimulus 1 trials in Correct and Incorrect trials (top left) but does not differentiate between Correct and Incorrect trials with the 
same stimulus type (top right). The decision neuron has a strong preference for Stimulus 1 in Correct trials but prefers Stimulus 2 in Incorrect trials, that 
is follows the choice of the mouse and not the stimulus (bottom left). This also shows when comparing activity between Correct and Incorrect trials of 
the same Stimulus type (bottom right). (b) ROC AUC values for all neurons when comparing activity between Stim 1 and Stim 2 trials (left) and Correct 
and Incorrect trials (right). (c) The percentage of stimulus, decision and other neurons that show significant choice selectivity in at least one stimulus 
condition (left) or both stimulus conditions (right). (d) Number and percentage of stimulus and decision coding neurons per FOV (693 ×693 μm). N = 14 
FOVs (13 mice), mean ± s.e.m.. Average trial activity 1 s before the lick (left, Fig. 2c), average trial activity from 1 s before the lick to 0.1 s before the lick 
(right). Gray open circles denote single FOVs.
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Extended Data Fig. 3 | Spatial clustering of stimulus and decision neurons. (a) Distribution of z-scores for mean pairwise distances. Z-score < 0 means 
that neurons are more clustered, z-score > 0 means that neurons are less clustered than a randomly selected group of neurons in the FOV. N = 73 FOVs, 
Test against 0, two-sided Wilcoxon rank sum test. (b) Distribution of absolute distances to the nearest barrel center for all decision neurons (left) and 
stimulus neurons (right). Control distribution has been calculated from the same number of randomly selected neurons across the FOV. Two-sided 
Wilcoxon rank sum test. (c) Mean distance from the nearest barrel (normalized to a shuffled distribution of randomly selected neurons across the FOV) 
for each session. Data are presented as mean values ± s.d., two-sided Wilcoxon signed-rank test.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Gaussian GLM to identify neurons whose activity is predicted by choice. (a) Extraction of whisking kinematics from high-speed 
videography using DeepLabCut in an example trial. (b) Covariance matrix for GLM regressors. (c) Gaussian GLM predicting trial activity in an example 
neuron. (d) All neurons of an example session and their delta R2, that is the difference between R2 of the full model and the R2 of the mean of the 
distribution of random regressor models. (e) Left, explained variance by full model for all neurons. Inlay is the same data but plotted on a log scale to see 
that functionally identified neurons have more variance explained by the GLM analysis than other neurons. Right, Variance explained by each regressor 
individually for neurons identified as stimulus, choice, running or whisking neurons by the GLM analysis. Inlay is the same data but plotted on a log scale to 
see that the neurons with more variance explained by the respective regressor are identified as choice, stimulus, running or whisking neurons respectively. 
(f) Two-dimensional embedding of the explained variance for each regressor for all neurons. Significant contribution of a regressor to the prediction of 
neural activity is colored (Purple = Stimulus; Green = Choice; Blue = Running; Orange = Whisking). Neurons with multiple significant regressors show 
mixed colors.
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Extended Data Fig. 5 | Timing of stimulus and decision neuron activity. (a) Peak activity of single neurons with respect to the go cue or the first lick. The 
majority of neurons exhibits peak activity before the go cue and lick in the stimulus and decision neuron subgroup. (b) The time of first touch in all trials in 
a subset of sessions. Left, All first touch times across sessions. Right, First touch times color-coded by session. N = 8 sessions. (c) Activity of stimulus and 
decision neurons averaged across sessions and aligned to the stimulus onset (left), the lick of the mouse (center) or the first whisker touch (right). Line 
and shaded area represent mean ± s.e.m.. (d) The same activity traces but sorted by neuron type and aligned to the peak.
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Extended Data Fig. 6 | Learning and decision coding in trials with uninformed licks. (a) Increase in performance between the first day of training of the 
four texture task and the expert session. Each session was divided into windows of trials containing 5 trials (step size 1) with the new textures and we 
calculated the percentage of windows that contain a percentage of Correct Trials that is above 70%. Round marker: first session; cross marker: expert 
session. Data are presented as mean values ± s.e.m.. P-values of a two-sided Wilcoxon rank sum test are: Mouse 1: p = 0.01, mouse 2: p = 0.0005, mouse 
3: p = 0.72, mouse 4: p = 0.01. N = number of windows: Mouse 1: 123/184, mouse 2: 206/223, mouse 3: 132/149, mouse 4: 136/173. Colors indicate 
different mice similar to the color code in Fig. 4c. (b) Validation accuracy of a linear classifier trained using decision neuron activity in correct Lickport S/R 
trials with Stim S/R presented or random Lickport S/R trials with Stim S2/R2 presented on the first day of four-texture training (n = 6 mice). Random S2/
R2 trials occurred during stretches of behavior (50 trials) with chance level performance in S2 and/or R2 trials. Two-sided Wilcoxon signed-rank test. (c) 
The same as b) but using decision neuron activity in correct trials with either Stim S/R or Stim S2/R2 presented in the best four-texture session for each 
mouse (n = 6 mice). Two-sided Wilcoxon signed-rank test.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Distribution of Miss trials in the session and whisking, running and fluorescence during Miss trials. (a) Distribution of Miss 
Stimulus- and Miss Stimulus+ trials in each session. Session length has been normalized. N = 66 sessions, stars indicate bins with p < 0.0025 (Bonferroni 
corrected significance level), two-sided Wilcoxon signed-rank test. (b) Whisking amplitude before the go cue in Correct, Miss, Miss Stimulus- and 
Miss Stimulus+ trials in a subset of sessions with whisker kinematics. Data are presented as mean values ± s.d., n = 15 sessions, two-sided Wilcoxon 
signed-rank test. (c) Running speed before the go cue in Correct, Miss, Miss Stimulus- and Miss Stimulus+ trials in a subset of sessions with whisker 
kinematics. Data are presented as mean values ± s.d., n = 15 sessions, two-sided Wilcoxon signed-rank test. (d) Fluorescence traces (z-scored) in two 
example sessions split by neuron type and trial type. Thick black line indicates the mean. (e) Mean trial activity in stimulus and decision neurons. Data are 
presented as mean ± s.d., n = 57 sessions, two-sided Wilcoxon signed-rank test. (f) Prediction accuracy of a classifier trained on correct trials to predict 
stimulus type or choice with stimulus neuron activity (left) or decision neuron activity (right) in incorrect trials. Mean ± s.e.m., n = 63 sessions, two-sided 
Wilcoxon signed-rank test.
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Extended Data Fig. 8 | Online target selection for photostimulation. (a) Online target selection procedure. Left to right: (1) ROIs were detected from 
live imaging stream (15 to 25 minutes). (2) Trial selectivity of each ROI was estimated from a baseline imaging session (during behavior, 150 trials). (3) 
Quality of each ROI was assessed with a convolutional neural network (CNN) based method. ROIs with low probability of being a neuron were excluded 
from target selection (threshold 0.15–0.3). (4) Photostimulation response of the trial-coding neurons that were screened for photo-excitability. Dashed 
and solid circles mark the target ensembles selected by this procedure. Representative of 7 mice. (b) Comparison of ROIs detected online and post-hoc. 
Thick dashed and solid circles mark the loci of light spirals used during the experiment for activating the target ensembles. Thin circles mark cells within 
the photostimulation spatial resolution. Pixel intensity indicates the weight of each pixel in generating the signal extracted from each ROI (same for c and 
d). (c) Photostimulation response in the field-of-view when the two target ensembles were stimulated during the all-optical behavioral session (comparing 
photostim and no-photostim catch trials). (d) Trial selectivity of ROIs detected post-hoc. Scale bars in (a–d), 100 μm. (e) Calcium time course of the 
directly activated cells in correct Stim S trials and correct Stim R trials. Thick line is mean; shaded area is s.d.. N = 80 target ensembles, 40 sessions, 7 
mice. (f) Number of light spirals (10.3 ± 3.8), cells under spirals (light-targeted, 19.8 ± 8.2) and directly activated targets (7.9 ± 3.1) per photostimulation 
condition in catch trials (mean ± s.d.). N = 80 target ensembles, 40 sessions, 7 mice. (g) Trial selectivity of directly activated target ensembles (averaged 
across all activated targets in each ensemble. Data are presented as mean ± s.d., ****p < 0.0001, two-sided Wilcoxon signed-rank test). N = 27 out of the 
40 sessions where both target ensembles meet the activation criteria (see Methods).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Stimulus and choice selectivity of targets and followers in targeted photostimulation experiments. (a) Calcium timecourses 
of the directly activated target, positive follower and negative follower ensembles aligned to go cue (green vertical line). Thick line is mean; shaded area 
is s.d.. N = 80 target ensembles, 40 sessions, 7 mice. (b) The relative stimulus selectivity of the positive or negative followers compared with other 
background cells (non-followers) is positively or negatively correlated with the stimulus selectivity of the target ensembles, respectively (same dataset 
as in a). There is no significant correlation between the choice selectivity of the followers and that of the targets. R and p are the Pearson correlation 
coefficient and the p-value, respectively. (c) The absolute value of stimulus selectivity is higher than that of choice selectivity in target and background 
cells but is comparable to choice selectivity in the followers (targets, **p = 0.0046, n = 569 neurons; background cells, *p = 0.018, 10458 neurons; positive 
followers, n.s., p = 0.97, n = 558 neurons; negative followers, n.s. p = 0.29). 962 neurons, 40 sessions, 7 mice. Bars are mean, two-sided Wilcoxon signed-
rank test.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Analysis of the behavioral effect of targeted photostimulation. (a) Task performance measured as the percentage of correct 
choices over the total number of correct and incorrect choices the animal made in different types of trials (0.74 ± 0.028 and 0.73 ± 0.027 in PhotoBoost 
control trials and PhotoBoost trials, n.s., p = 0.59, n = 38 condition pairs; 0.78 ± 0.037, 0.75 ± 0.034 in PhotoDisrupt control trials and PhotoDisrupt trials, 
n.s., p = 0.73, n = 28 condition pairs; 32 sessions, 7 mice, two-sided Wilcoxon signed-rank test. 5 sessions where target ensembles were swapped in 
PhotoBoost and PhotoDisrupt were not included in this plot. Boxes are mean, whiskers are s.e.m.. (b) The change in texture discrimination performance in 
photostimulation trials is negatively correlated with the discrimination performance in the control trials, but apart from the conditions with perfect texture 
discrimination in control trials, photostimulation could induce both positive and negative change. (c) Lick rate in catch trials that received photostimulation 
(Photo+) is similar to the catch trials without photostimulation (Photo-). N = 44 photostimulation ensembles, n.s. p = 1, two-sided Wilcoxon signed-rank 
test. (d) The effect size of photostimulation on discrimination performance does not depend on the number or the spatial clustering (measured as the 
average pairwise distance between light spirals) of photostimulation sites. (e) The change in texture discrimination performance in photostimulation trials 
does not correlate with the average photostimulation response of the background cells. Same experiments as in Fig. 7b. (f) A linear regression model to 
predict discrimination performance change based on the weighted average photostimulation response by the stimulus or choice selectivity of targets and 
background neurons, as well as whisking amplitude. N = 60 photostimulation conditions, 29 sessions, 7 mice in which whisker movements were recorded 
by high-speed videography. Data are presented as mean ± s.e.m.. The p-values are for the t-statistic of the hypothesis test that the corresponding 
coefficient is equal to zero. (g) The change in discrimination performance does not correlate with the onset of photostimulation. (h) The performance of 
the online predictor does not correlate with the choice selectivity of the targets. g-h, Same experiments as in Fig. 7b. R and p are the Pearson correlation 
coefficient and the p value, respectively.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Behavoiural data was acquired using PyBehaviour (www.github.com/llerussell/PyBehavior). Imaging data were acquired using ThorImage 

3.1. PackIO was used to synchronize imaging data and behavioural data (reference X). Arduino IDE was used to control setup-

components such as stimulus presentation. pyRTAOI, a custom-based real-time all-optical interface was used for all-optical experiments. 

CaImAn was used for online ROI detection in all-optical experiments (reference ). Highspeed videography was recorded using the 

software package 2ndLook (IO Industries). A custom SLM control interface was written in C++ with Qt 5.9, developed in Microsoft Visual 

Studio 2013.

Data analysis Data analysis was performed in Matlab using custom written scripts and available software. Segmentation and event detection of calcium 

imaging data was performed using Suite2p (www.github.com/cortex-lab/Suite2P, reference ). DeepLabCut 1.0 (www.github.com/

DeepLabCut/DeepLabCut, reference ) was used to analyze whiskers in highspeed videography.  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The data and analysis code that support the findings of this study are available from the corresponding authors upon reasonable request
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes. 

Data exclusions No mice were exluded from the analysis unless they did not learn the task, data could not be collected due to poor transgenic GCaMP or viral 

expression or occlusion of the chronic window. All other reasons for exclusions of trials or sessions are mentioned in the Methods sections. 

For example groups of trials were excluded from the analysis if the mouse developed a lickport bias as described in the Methods section "Data 

analysis". For some analyses, sessions were only included if they contained at least 5 stimulus and 5 decision neurons (see e.g. "Spatial 

clustering" and "Shared trial-by-trial response variability" in the Methods section). 

Replication Decision neurons, as described in this manuscript, were found in all mice that we were able to record and that learnt the task. Therefore, the 

core finding that these neurons exist was replicated multiple times. Moreover, every other finding in the manuscript was shown in multiple 

mice and therefore replicated across mice. 

Randomization No randomization of mice was done as all mice were trained and recorded under the same conditions. Presentation of texture stimulus type 

was randomized within each training session. There was also a variable delay between trials to randomize the trial start time. 

Blinding Data collection and analysis were not performed blind to the conditions of the experiment, but analysis relied on code that was standardized 

for all experimental conditions. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We used wildtype mice (C57/Bl6), transgenic mice expressing GCaMP6s in excitatory neurons (EMX1-Cre; Camk2a-tTA; Ai94 (Jax 

#027784; #007004; #024104) and Camk2a-tTA; tetO-G6s (Jax #007004; #024742)) mice. Mice were of either gender and 

between 8 and 36 weeks old at the start of experiments. 

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study. 

Ethics oversight All animal procedures were approved by the local Animal Welfare and Ethical Review Board at University College London and 

performed under license from the UK Home Office in accordance with the Animals (Scientific Procedures) Act 1986

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Behaviorally relevant decision coding in primary somatosensory cortex neurons

	Results

	Task-dependent activity in L2/3 of barrel cortex. 
	Stimulus and decision coding in L2/3 barrel cortex neurons. 
	Distinct activity patterns in stimulus and decision neurons. 
	Categorical coding in decision neurons develops with learning. 
	Miss trials lack a conclusive decision signal. 
	Cell-type specific functional connectivity in L2/3 neurons. 
	Targeted optogenetic activation modulates behavior. 

	Discussion

	Experimental requirements to identify decision signals. 
	The circuit organization of stimulus and decision neurons. 
	Implications for sensory processing. 

	Online content

	Fig. 1 Imaging task-dependent activity in L2/3 barrel cortex during a two-choice texture discrimination task.
	Fig. 2 Stimulus and decision coding in L2/3 barrel cortex neurons.
	Fig. 3 Subset-specific activity patterns and timing in stimulus and decision neurons.
	Fig. 4 Categorical coding in decision neurons develops with learning.
	Fig. 5 Miss trials lack a conclusive decision signal.
	Fig. 6 Cell-type specific functional connectivity of stimulus and decision coding neurons.
	Fig. 7 Activation of neurons with correct choice selectivity improves behavioral performance.
	Extended Data Fig. 1 Behavioral performance of expert mice in the two-choice two-texture discrimination task.
	Extended Data Fig. 2 Stimulus and choice selectivity in L2/3 S1 neurons.
	Extended Data Fig. 3 Spatial clustering of stimulus and decision neurons.
	Extended Data Fig. 4 Gaussian GLM to identify neurons whose activity is predicted by choice.
	Extended Data Fig. 5 Timing of stimulus and decision neuron activity.
	Extended Data Fig. 6 Learning and decision coding in trials with uninformed licks.
	Extended Data Fig. 7 Distribution of Miss trials in the session and whisking, running and fluorescence during Miss trials.
	Extended Data Fig. 8 Online target selection for photostimulation.
	Extended Data Fig. 9 Stimulus and choice selectivity of targets and followers in targeted photostimulation experiments.
	Extended Data Fig. 10 Analysis of the behavioral effect of targeted photostimulation.




